Variations in the degree of D-Alanylation of teichoic acids in Lactococcus lactis alter resistance to cationic antimicrobials but have no effect on bacterial surface hydrophobicity and charge.

نویسندگان

  • Efstathios Giaouris
  • Romain Briandet
  • Mickael Meyrand
  • Pascal Courtin
  • Marie-Pierre Chapot-Chartier
چکیده

An increase of the degree of d-alanylation of teichoic acids in Lactococcus lactis resulted in a significant increase of bacterial resistance toward the cationic antimicrobials nisin and lysozyme, whereas the absence of D-alanylation led to a decreased resistance toward the same compounds. In contrast, the same variations of the D-alanylation degree did not modify bacterial cell surface charge and hydrophobicity. Bacterial adhesion to polystyrene and glass surfaces was not modified either.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-Alanylation of Lipoteichoic Acids Confers Resistance to Cationic Peptides in Group B Streptococcus by Increasing the Cell Wall Density

Cationic antimicrobial peptides (CAMPs) serve as the first line of defense of the innate immune system against invading microbial pathogens. Gram-positive bacteria can resist CAMPs by modifying their anionic teichoic acids (TAs) with D-alanine, but the exact mechanism of resistance is not fully understood. Here, we utilized various functional and biophysical approaches to investigate the intera...

متن کامل

A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii

Antimicrobial peptides represent an alternative to traditional antibiotics that may be less susceptible to bacterial resistance mechanisms by directly attacking the bacterial cell membrane. However, bacteria have a variety of defense mechanisms that can prevent cationic antimicrobial peptides from reaching the cell membrane. The L- and D-enantiomers of the antimicrobial peptide GL13K were teste...

متن کامل

DltABCD-mediated d-alanylation of teichoic acids in Group A Streptococcus confers innate immune resistance

Group A Streptococcus (GAS) is a major cause of both mucosal and invasive human infections. Epithelial and leukocyte production of cationic antimicrobial peptides (AMPs) is an important aspect of mammalian innate immune defense against bacterial infection. In this study, we identify a specific GAS phenotype that confers resistance to host AMPs. Inactivation of the dltA gene in an invasive serot...

متن کامل

The Staphylococcus aureus Methicillin Resistance Factor FmtA Is a d-Amino Esterase That Acts on Teichoic Acids

UNLABELLED The methicillin resistance factor encoded by fmtA is a core member of the Staphylococcus aureus cell wall stimulon, but its function has remained elusive for the past two decades. First identified as a factor that affects methicillin resistance in S. aureus strains, FmtA was later shown to interact with teichoic acids and to localize to the cell division septum. We have made a breakt...

متن کامل

DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects

The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 15  شماره 

صفحات  -

تاریخ انتشار 2008